

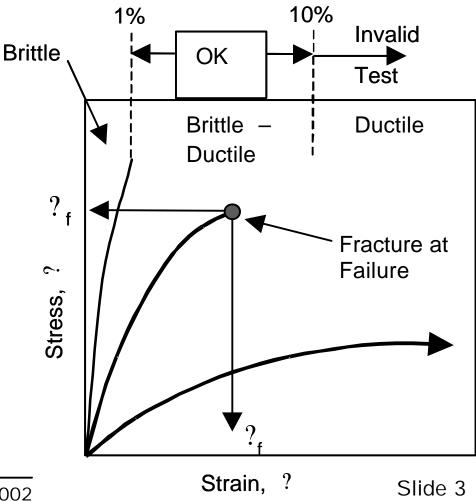
Effectiveness of the DTT and MP1a

presented to

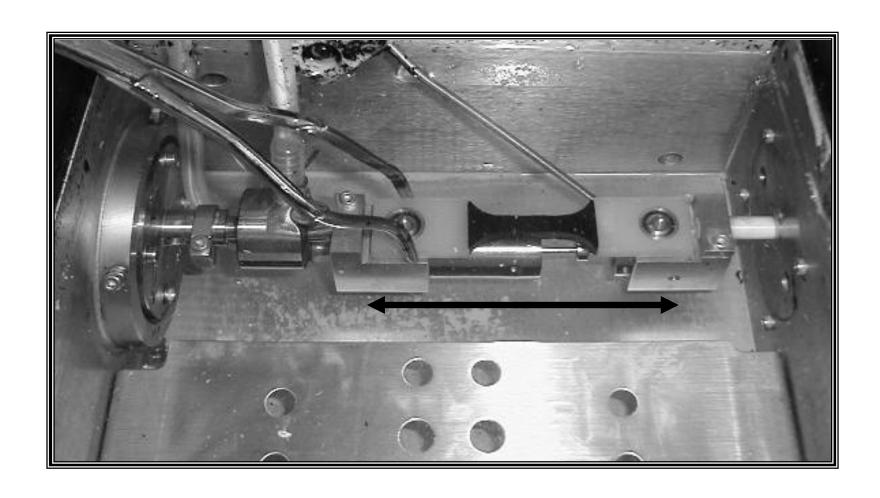
NEAUPG - Fall 2002 Newport, RI

by

Dr. David A. Anderson
NECEPT
Penn State University
October 31, 2002


Background

- ∠ Early recognition of need
 - ∠Pell, University of Nottingham, England
 - ✓ Van der Poel, DutchShell
- Anderson, Chemcrete work 1980's
- ∠ Anderson-Sharma-Dongre SHRP A-002A
- **∠**Post SHRP


 - **∠**Others

What is the direct tension test?

Tensile specimen is pulled until it ruptures

Photograph of test

What is the question at hand?

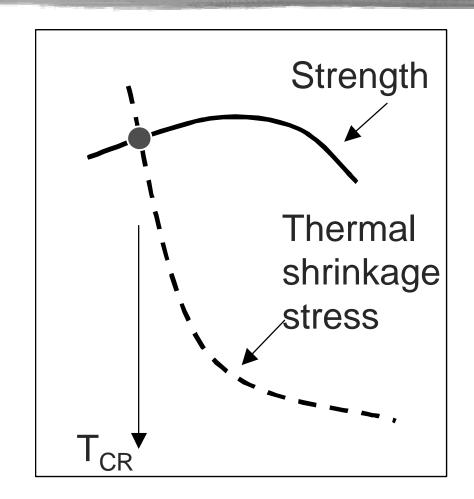
- Question Which procedure should we use in the Northeast?
- - Reliability of method in predicting critical cracking temperature
 - Relative cost of testing
- Critical cracking temperature predicts temperature where single event thermal cracking will occur

Status of test at close of SHRP - 1994

- - **∠**Dimensions
- - Machine compliance
- Current status? Valid test method/equipment

I ssues resolved to date

- Specimen molds metal versus silicone


- - Lack of uniformity method evolving
 - Chapter 9 of manual
- **∠**AASHTO MP1a defines use
 - Test procedure and specification

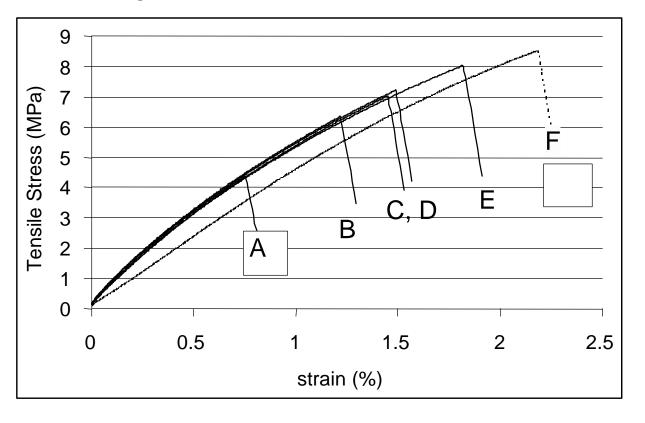
Why consider direct tension test?


- - **ZAASHTO MP1a versus AASHTO MP1**

Thermal fatigue cracking – Reserve Strength

Stress, MPa

Temperature

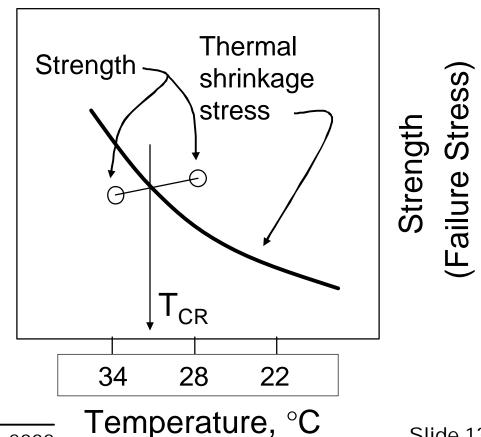

Test variability

- Questioned in past
 - ∠DTT improved
- - ∠I ndications are that about same variability
 when consider grading temperature from
 AASHTO MP1 and AASHTO MP1a
 - ∠Variability not issue

Further refinements

∠ How to select replicates?

Currently discard lowest two measurements


AASHTO MP1 - Testing requirements

- Conduct bending beam rheometer test
- ∠ Alternative May waive stiffness requirement
 if strain at failure is ¾?1.00%

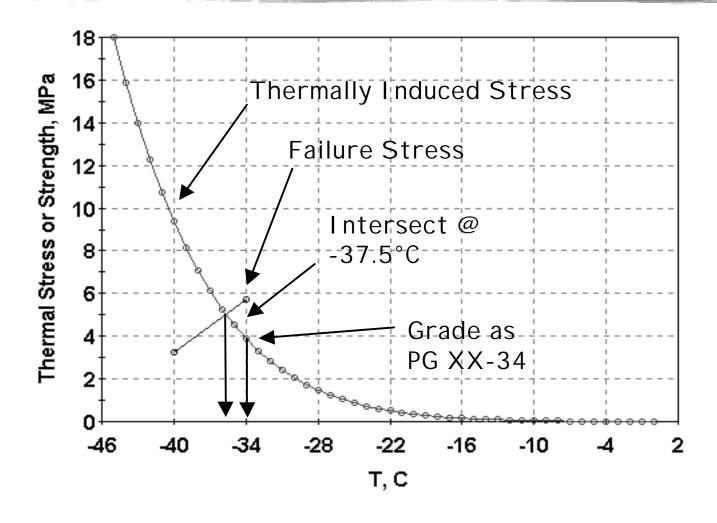
AASHTO MP1a

- Compare strength to thermal shrinkage stress
- ∠ Define T_{CR}

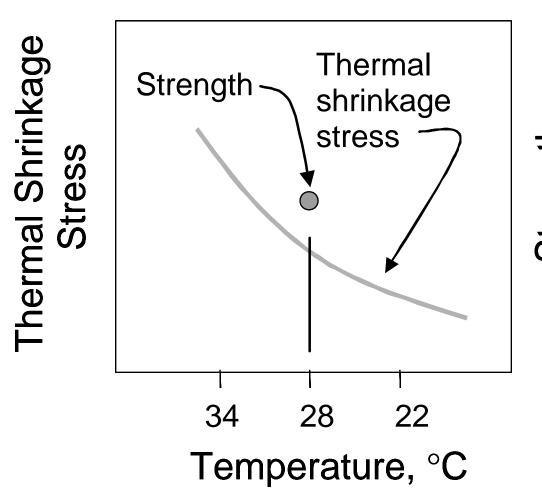
Thermal Shrinkage Stress

D. Anderson, NEAU/PG, October 30-31, 2002

Slide 13



Maximum Pavement Design Temperature, °C	Minimum Pavement Design Temperature, °C						
PG 46					-34	-40	-46
PG 52	-10	-16	-22	-28	-34	-40	-46
PG 58		-16	-22	-28	-34	-40	
PG 64	-10	-16	-22	-28	-34	-40	
PG 70	-10	-16	-22	-28	-34	-40	
PG 76	-10	-16	-22	-28	-34	-40	
PG 82	-10	-16	-22	-28	-34	-40	


AASHTO MP1a - Testing requirements

- - **∠**BBR test at two temperatures
 - thermal shrinkage stresses
 - ∠DT test at two temperatures
 - interpolate to find temperature where thermal shrinkage stress equals
- - **∠**BBR test at two temperatures as above
 - thermal shrinkage stresses
 - ∠DT test at a single temperature
 - - strength > thermal stress

Determining grade of unknown

Verification - Acceptance

Strength (Failure Stress)

Cost of AASHTO MP1a vs. AASHTO MP1

∠ AASHTO MP1 - acceptance

∠Two BBR tests

One DTT test

∠ Is improved reliability justified by increased cost?

What data are available?

- Round robins
 - Limited but forthcoming

- Northeast supplier information
 - Limited in quantity
 - - DTT at two temperatures
 - BBR at two temperatures

FHWA Round Robin (Dongre)

	Binde	r AA-1	Binde	r RRA
Lab.	MP1A	MP1	MP1A	MP1
1	-32.4	-33.7	-29.5	-29.2
2	-30.6	- 32.8	-29.4	-28.6
3	-31.1	-31.5	-30.1	-29.0
4	-32.3	-32.8	-30.0	-29.5
5	-32.4	-33.7	-29.8	-30.0
6	-31.1	-33.0	-30.2	-29.2
7	-32.9	-31.7	-30.4	-29.4
8	-32.6	-33.0	-29.6	-29.7
9	-31.5	-32.3	-29.7	-28.1
Average	-31.9	-32.7	-29.9	-29.2
Std. Dev.	0.80	0.80	0.30	0.60
CV,%	2.5	2.4	1.0	2.1

T _{cr} ∘C				
Lab No.	PG64-22	PG76-22		
1	-23.7	-26.6		
2	-26.3	-28.6		
3	-26.1	-26.1		
4	-24.6	-24.3		
5	-25.8	-31.6		
6	-26.2	-29.1		
Average	-25.5	-27.7		
STDEV	1.1	2.6		
COV, %	4	9		

D. Anderson, NEAU/PG, October 30-31, 2002

NEAU/PG Round Robin - Before Training

	SS 11					SS 12				
Lab	-12	.°C	-18	3°C		-12	2°C	-18	3°C	
No.	Strain*	Stress*	Strain*	Stress*	Tcr °C	Strain*	Stress*	Strain*	Stress*	Tcr °C
1	5.22	4.43	1.29	4.08		3.52	4.01	0.95	3.88	
2	2.04	3.02	0.63	2.90	-24.6	1.46	2.63	0.90	3.02	-25.1
3	4.75	3.96				4.51	3.82			•
4	5.21	4.50				5.99	4.63			
5	1.71	3.12	0.71	3.61	-23.5	5.73	4.23	1.69	5.89	
6	1.21	2.45								
7	5.98	4.44	1.09	4.34	-27.9	6.33	4.26	1.43	4.69	-29.1
8	4.24	3.96			ı	3.13	3.66			•
9	1.07	2.66	0.39	2.33	-25.2	3.15	3.97	0.59	3.02	-24.6
10	7.78	4.28				9.21	4.00			
11	4.03	4.25	1.84	6.26		8.49	4.08	1.43	5.07	•
12	7.49	4.44			•	6.92	4.19			•
13	5.94	4.69	1.39	5.72		5.13	4.44	1.88	6.46	
14	2.34	3.78	1.51	5.98	-27.8			1.58	5.96	-29.2
Avera	4.22	3.86	1.11	4.40	-25.8	5.30	3.99	1.31	4.75	-27.0
SD	2.24	0.74	0.49	1.46	1.97	2.29	0.50	0.45	1.34	2.49

Kluttz at Asphalt Binder ETG

AC	SBS		al Cracking erature	MP1a PG Grade		
		3%	5%	3%	5%	
Α	Control	-2	5.4	-22		
	1	-25.3	-25.9	-22	-22	
	2	-24.5	-25.2	-22	-22	
	3	-23.1	-23.5	-22	-22	
	4	-25.6	-26.1	-22	-22	
	5	-28.3	-28.6	-28	-28	
	6	-27.6	-29.9	-22	-28	
В	Control	-25.2		-22		
	1	-26.0	-24.5	-22	-22	
	2	-26.6	-23.9	-22	-22	
	3	-25.1	-23.9	-22	-22	
	4	-23.7	-20.7	-22	-16	
	5	-25.2	-17.5	-22	-16	
	6	-28.0	-28.1	-28	-28	

D. Anderson, NEAU/PG, October 30-31, 2002

D'Angelo Asphalt Binder ETG

T _{cr} Current Spec	T _{cr} Proposed Spec
-24.5	-22.5
-25.1	-22.5
-26.0	-30.5
-29.0	-28.0
-27.5	-27.0
-29.5	-27.5
-27.3	-27.0
-34.7	-36.0
	-24.5 -25.1 -26.0 -29.0 -27.5 -29.5 -27.3

Slide 24

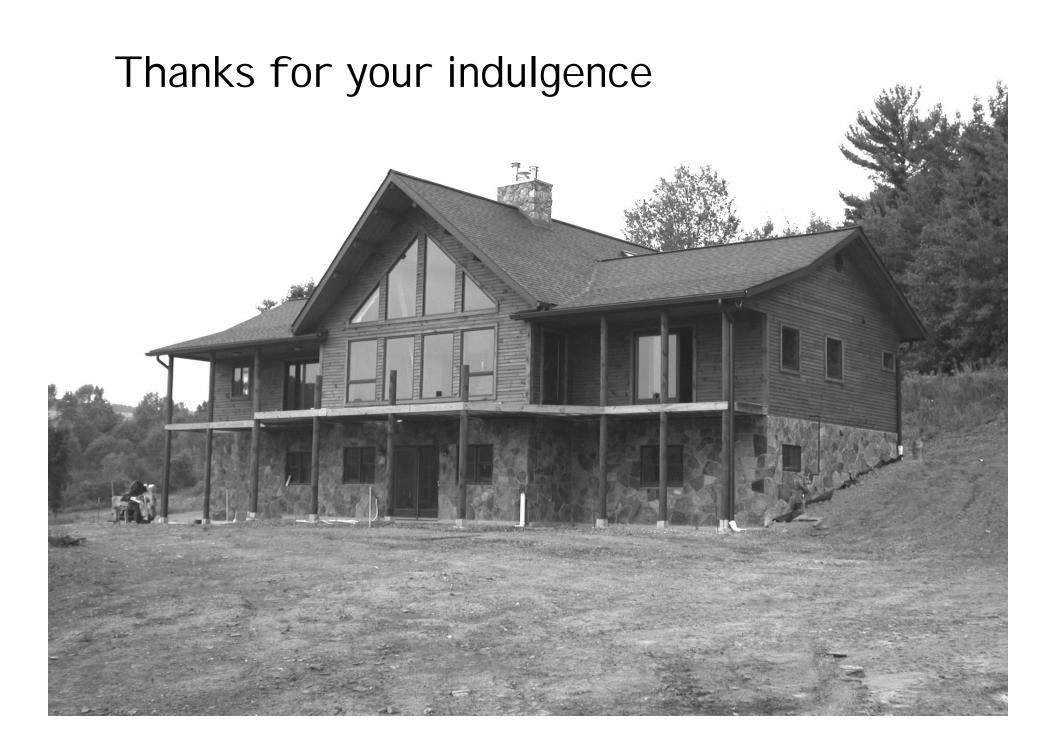
Northeast Data

- Requested of suppliers by states
- Decided to make direct contact with suppliers

 - - Now referring to original data sheets
 - Procedure to determine T_{CR} is NOT user friendly
 - **∠**Complete analysis and report by 12/31/02

Summary of data to date

Property	Temperature, C
S = 300MPa	-30.3
m = 0.300	-28.8
Tcr	-29.3
Tcr - S=300MPa	0.8
Tcr - m = 0.300	-0.5


When is DTT/AASHTO MP1a Effective?

- - Added benefit at low temperatures
 - Approximately 2?C lowering of grading temperature
- ∠I dentification of "oddball" material
- - **∠**Use DTT alone
 - Fracture properties for fatigue

Recommendations

- - Additional cost does not justify use of MP1 at this time
- Allow supplier to opt for AASHTO MP1a in stretch grades
- Complete evaluation of currently available data
- ∠ In-depth analysis of selected sampling in 2003
- Decision pending actions by Binder ETG

